If it's not what You are looking for type in the equation solver your own equation and let us solve it.
26x^2-26x+1=0
a = 26; b = -26; c = +1;
Δ = b2-4ac
Δ = -262-4·26·1
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{143}}{2*26}=\frac{26-2\sqrt{143}}{52} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{143}}{2*26}=\frac{26+2\sqrt{143}}{52} $
| 8/9x^-2/3+10/9x^-5/3=0 | | (1.01)^(12x)=2 | | 0.18(y-9)+0.02y=0.10(4.8-2.1) | | 10x-7+4x+6=3x+7+11x-8 | | 6(j-14)+5(j-18)=2 | | x+1.2x=401.3 | | 7+14s-1=8s+96-4s | | 7v=21 | | 5x2+38x+48=0 | | 5x²+38x+48=0 | | 7-(4p+3)=6(5p-3)-(p-7) | | 12−5/1r=2r+1 | | 8y+3=5y-18 | | 2(2y+1)=3(y-2)+11 | | 3(2n+2)=5(n-1)+9 | | 3(2n=2)=5(n-1)+9 | | 7(n+1)-2=6n+6 | | 0.8n=-40 | | 3x-2=175 | | 6r7+6r6=9r5+9r4 | | 1.25x-60=1160 | | -2(3x+2)-4(1-x)=2(4x+2)-6 | | 4x+x-3=7x-5+7 | | 1.25x-60=2320 | | -3y+2(2y+1)=3(4y-2)-3 | | 2(3+x)=4(4x-1)-18 | | -3(2y+3)-17=-4(y+8)2y | | 12q+1=12 | | 4(2y+1)-2=-4 | | 112q+1=12 | | 1/14(n-2)=2/7(n+9)-1/7n | | -1/3-5y=9 |